

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Chemical reactors engineering and b	ioreactors			
Course				
Field of study		Υ	/ear/Semester	
Chemical and process engineering		1	l/1	
Area of study (specialization)		F	Profile of study	
Chemical engineering		£	general academic	
Level of study		(Course offered in	
Second-cycle studies		F	Polish	
Form of study		F	Requirements	
full-time		C	compulsory	
Number of hours				
Lecture	Laboratory classes		Other (e.g. online)	
30				
Tutorials	Projects/seminars			
	15			
Number of credit points				
4				
Lecturers				
Responsible for the course/lecturer:		Responsible for t	he course/lecturer:	
dr hab. inż. Krzysztof Alejski, prof. PP				
Prerequisites				
Fundamentals of Chemical Reaction	Engineering			

Course objective

Obtaining knowledge and skills in the calculation of real flow reactors, heterogeneous reactors and bioreactors.

Course-related learning outcomes

Knowledge

1. Has structured and theoretically founded knowledge of advanced chemical reactor models. (K_W04, K_W12)

2. Has knowledge of the phenomena occurring in heterogeneous reactors and bioreactors. (K_W05, K_W11)

Skills

1. Has the ability to select an advanced reactor or bioreactor model for a specific proces. (K_U09, K_U10)

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. Is able to design a real, heterogeneous reactor or bioreactor. (k_U01, K_U09)

Social competences

- 1. Can interact and work in a group, taking on different roles on it. (K_K03)
- 2. Correctly identifies and resolves dilemmas related to the exercise of the profession.(K_K05)

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Knowledge acquired during the lecture and skills are verified during the written exam. Passing threshold: 50% of points. Knowledge, skills and competences within project classes are verified on the basis of projects made in two-man teams.

Programme content

- 1. Characteristics of real reactors.
- 2. Functions of the distribution of residence time in reactors.
- 3. Calculation of the conversion in real reactors.
- 4. Kinetics of heterogeneous reactions.
- 5. Calculation of heterogeneous reactors.
- 6. Bioreactors.

Teaching methods

Lecture: presentation with discussion on the board.

Project: implementation of the reactor design in two-man teams.

Bibliography

Basic

- 1. J. Szarawara, J. Piotrowski, Podstawy teoretyczne technologii chemicznej, Warszawa, PWN 2010.
- 2. Podstawy technologii chemicznej i inżynierii reaktorów, pod red. M. Wiśniewskiego
- i K. Alejskiego, skrypt, Wydawnictwo Politechniki Poznańskiej, Poznań 20017.
- 3. Fogler H. Scott, Elements of Chemical Reaction Engineering, Prentice Hall 2016.

Additional

1. A. Burghardt, G. Bartelmus, Inżynieria reaktorów chemicznych, PWN Warszawa 2001.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	90	4,0
Classes requiring direct contact with the teacher	45	2,0
Student's own work (literature studies, preparation for tests/exam,	45	2,0
project preparation) ¹		

¹ delete or add other activities as appropriate